Условие задачи:
Движение двух автомобилей по шоссе задано уравнениями \(x_1=2t+0,2t^2\) и \(x_2=80-4t\). Найти время и место встречи автомобилей.
Задача №1.7.3 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(x_1=2t+0,2t^2\), \(x_2=80-4t\), \(x-?\), \(t-?\)
Решение задачи:
Когда эти два автомобиля встретятся, их координаты будут равны. Поэтому, чтобы найти время встречи \(t\) приравняем уравнения.
\[2t + 0,2{t^2} = 80 — 4t\]
\[0,2{t^2} + 6t — 80 = 0\]
\[{t^2} + 30t — 400 = 0\]
Решим получившееся квадратное уравнение, для чего найдем дискриминант.
\[D = 900 + 4 \cdot 400 = 2500\]
\[t = \frac{{ — 30 \pm 50}}{2}\]
\[\left[ \begin{gathered}
t = 10 \; с \hfill \\
t = — 40 \; с \hfill \\
\end{gathered} \right.\]
Получили два корня, один из которых не может являться ответом, поскольку он отрицательный. Теперь, чтобы найти место встречи автомобилей, нужно подставить полученное время в любое из уравнений. Будет легче всего, если подставить во второе.
\[x = 80 — 4 \cdot 10 = 40\; м\]
Ответ: 10 с, 40 м.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
1.7.2 Скорость течения реки 1,5 м/с. Какую скорость относительно воды должен иметь
1.7.4 Лодка, двигаясь перпендикулярно берегу, оказалась на другом берегу на расстоянии
1.7.5 По оси x движутся две точки: первая по закону x1=10+2t, а вторая — по закону
А какой характер их движения
Уточнение. Водитель x1 опомнился и повернул назад при времени t= — 5 c.
И через 5 с «начался» отсчет времени по задаче…
Очевидно водитель x1 хотел предупредить водителя x2 о том, что того ждет впереди…
Почему не учтен второй ответ?
Автомобили (до «начала решения задачи») встречались 40 с назад…
40 c назад они ехали в одну сторону. Потом (через некоторое время) водитель x1 «опомнился» (это как раз время t=0) и поехал назад. Вот тут-то через 10 с они и встретились…
Давайте не будем наводить смуту в умах людей и условимся, что в подобных задачах имеет смысл только положительное время (т.е. после начала отсчета).
Просто отрицательное время может появляться в различных задачах, например, на движение тела, брошенного под углом к горизонту, где оно точно не будет иметь смысла, а Вы можете их натолкнуть на поиск объяснения отрицательного корня.
Соглашусь, что некоторый анализ корней уравнения всё же нужен, но переусердствовать тоже не стоит.