Условие задачи:

Льдинка скользит по инерции вверх по наклонной плоскости с углом наклона к горизонту 45°, имея скорость 6 м/с у основания. На какую высоту она поднимется, если коэффициент трения равен 0,2?

Задача №2.3.2 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(\alpha=45^\circ\), \(\upsilon_0=6\) м/с, \(\mu=0,2\), \(H-?\)

Решение задачи:

Схема к решению задачи На схеме покажем все силы, действующие на льдинку. Введем оси координат так, что ось \(y\) направим перпендикулярно наклонной плоскости, а ось \(x\) — вдоль плоскости. Понятно, что льдинка будет двигаться равнозамедленно, так как проекция силы тяжести на ось \(x\) и сила трения скольжения будут её тормозить. Запишем второй закон Ньютона в проекции на ось \(x\):

\[ma = mg \cdot \sin \alpha  + {F_{тр}}\;\;\;\;(1)\]

Так как льдинка не движется вдоль оси \(y\), то запишем первый закон Ньютона в проекции на эту ось:

\[N = mg \cdot \cos \alpha \;\;\;\;(2)\]

Силу трения скольжения определим по известной формуле:

\[{F_{тр}} = \mu N\]

Учитывая (2), формула определения силы трения примет вид:

\[{F_1} = \mu mg \cdot \cos \alpha \]

Подставим полученное в (1), определим ускорение \(a\):

\[ma = mg \cdot \sin \alpha  + \mu mg \cdot \cos \alpha \]

\[a = g\left( {\sin \alpha  + \mu \cos \alpha } \right)\;\;\;\;(3)\]

В конце концов льдинка остановится, пройдя путь вдоль оси \(x\), равный \(S\). Применим следующую формулу из кинематики:

\[0 — \upsilon _0^2 =  — 2aS\]

Выразим путь \(S\):

\[S = \frac{{\upsilon _0^2}}{{2a}}\;\;\;\;(4)\]

Если посмотреть на схему, то понятно, что льдинка поднимется на высоту \(H\), определяемую соотношением:

\[H = S \cdot \sin \alpha \]

Подставим (3) в (4), а полученное — в последнюю формулу, тогда:

\[H = \frac{{\upsilon _0^2 \cdot \sin \alpha }}{{2g\left( {\sin \alpha  + \mu \cos \alpha } \right)}}\]

Поделим числитель и знаменатель на \(\sin \alpha\), так мы получим решение задачи в общем виде:

\[H = \frac{{\upsilon _0^2}}{{2g\left( {1 + \mu  \cdot ctg\alpha } \right)}}\]

Посчитаем численный ответ:

\[H = \frac{{{6^2}}}{{2 \cdot 10 \cdot \left( {1 + 0,2 \cdot ctg45^\circ } \right)}} = 1,5\; м\]

Ответ: 1,5 м.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

2.3.1 Тело скользит с постоянной скоростью вниз по наклонной плоскости с углом наклона
2.3.3 По канатной дороге, идущей с уклоном 30 градусов к горизонту, опускается вагонетка
2.3.4 По наклонной плоскости с углом наклона 30 градусов к горизонту скользит вниз тело

Пожалуйста, поставьте оценку
( 12 оценок, среднее 4.67 из 5 )
Вы можете поделиться с помощью этих кнопок:
Комментарии: 9
  1. Аноним

    между 3 и 4 формулой есть формула. Почему в ней написано МИНУС 2aS?
    S= Uво второй минус U0 во второй поделенное на 2а… А значит 0-U0 во второй равно просто 2аS… Разве нет?

    1. Аноним

      Или это из-за того что тело замедляется?

      1. Easyfizika (автор)

        Да, именно из-за того, что тело замедляется. Вы должны из квадрата конечной скорости вычесть квадрат начальной скорости. Если тело замедляется, то есть \({\upsilon _0} < \upsilon \), то \({\upsilon ^2} - \upsilon _0^2 < 0\), поэтому в правой части должен быть знак "минус". :smile:

  2. Архивиус

    Подскажите, пожалуйста, почему в формуле 0 – (v_0)^2 = – 2*a*S, правая часть уравнения с минусом, ведь ускорение согласно схеме направлено в туже сторону, что и ось Х, т.е. положительно?

    1. Easyfizika (автор)

      Сейчас все объясню. Эта формула в векторном виде записывается так:\[{\overrightarrow \upsilon ^2} — {\overrightarrow {{\upsilon _0}} ^2} = 2\overrightarrow a \cdot \overrightarrow S \]Здесь мы видим аж три скалярных произведения векторов. Скалярное произведение векторов в правой части этой формулы раскрывается следующим образом:\[\overrightarrow a \cdot \overrightarrow S = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow S } \right| \cdot \cos \left( {\overrightarrow a \wedge \overrightarrow S } \right)\]Если у Вас вектор ускорения сонаправлен с вектором перемещения, то косинус будет положительным, иначе — отрицательным. Вот так определяется знак в правой части этой формулы.

      Это объяснение наиболее полное. Есть проще: смотрите какой у Вас будет знак в левой части, такой же знак ставьте и в правой. :smile:

  3. Аноним

    как вы получили тангенс?

    1. Easyfizika (автор)

      Там должен быть котангенс, в решении была ошибка, а ответ получался правильный только из-за того, что угол \(\alpha\) равен 45°.
      Спасибо за замечание, решение откорректировано! :smile:

  4. Суннатулло

    А по формуле t=v°:a и h=v°xt- at2:2 решить тоже можно или я не прав?

    1. Easyfizika (автор)

      Конечно можете, но в вашем случае h — это расстояние, пройденное льдинкой вдоль наклонной плоскости, а это не совсем то, что мы ищем в этой задаче.
      Чтобы найти H, Вам также будет необходимо применить формулу:
      H= h*sin a

      Вообще, любопытства ради, подставьте t=v_0/a в h=v_0*t — at2/2. Вы получите:
      0 — (v_0)^2 = — 2*a*S
      Этим я хочу сказать, что Вы просто лишний раз удлиняете решение. Зачем Вам возиться с временем, если о нем не спрашивают и в условии о нём не говорится?

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: