Условие задачи:
Материальная точка совершает гармонические колебания. Если при неизменной амплитуде увеличить частоту колебаний в два раза, во сколько раз изменится максимальное значение возвращающей силы, действующей на точку.
Задача №9.1.25 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(\nu_2=2\nu_1\), \(\frac{F_{\max2}}{F_{\max1}}-?\)
Решение задачи:
Если материальная точка совершает гармонические колебания, то уравнение этих колебаний можно представить в виде:
\[x = A\sin \left( {\omega t} \right)\]
В этой формуле \(A\) — амплитуда колебаний, \(\omega\) — циклическая частота колебаний.
Чтобы найти уравнение ускорения точки при этих колебаниях, нужно дважды взять производную от уравнения колебаний. Сначала возьмем первую производную:
\[x^{\prime} = A\omega \cos \left( {\omega t} \right)\]
Теперь берем вторую производную:
\[x^{\prime\prime} = — A{\omega ^2}\sin \left( {\omega t} \right)\]
То есть мы имеем:
\[a = — A{\omega ^2}\sin \left( {\omega t} \right)\]
Понятно, что максимальное по модулю значение ускорения в таком случае следует искать по формуле:
\[{a_{\max }} = A{\omega ^2}\;\;\;\;(1)\]
Циклическая частота колебаний \(\omega\) и частота колебаний \(\nu\) связаны по известной формуле:
\[\omega = 2\pi \nu \]
Тогда формула (1) примет вид:
\[{a_{\max }} = 4{\pi ^2}{\nu ^2}A\;\;\;\;(2)\]
Максимальную возвращающую силу \(F_{\max}\) следует определять по формуле (это второй закон Ньютона):
\[{F_{\max }} = m{a_{\max }}\]
Тогда искомое отношение \(\frac{F_{\max2}}{F_{\max1}}\) равно:
\[\frac{{{F_{\max 2}}}}{{{F_{\max 1}}}} = \frac{{m{a_{\max 2}}}}{{m{a_{\max 1}}}}\]
\[\frac{{{F_{\max 2}}}}{{{F_{\max 1}}}} = \frac{{{a_{\max 2}}}}{{{a_{\max 1}}}}\]
Учитывая формулу (2), имеем:
\[\frac{{{F_{\max 2}}}}{{{F_{\max 1}}}} = \frac{{4{\pi ^2}\nu _2^2A}}{{4{\pi ^2}\nu _1^2A}}\]
\[\frac{{{F_{\max 2}}}}{{{F_{\max 1}}}} = \frac{{\nu _2^2}}{{\nu _1^2}}\]
В условии говорится, что частоту колебаний увеличивают в два раза, то есть \(\nu_2=2\nu_1\), поэтому:
\[\frac{{{F_{\max 2}}}}{{{F_{\max 1}}}} = \frac{{4\nu _1^2}}{{\nu _1^2}} = 4\]
Ответ: увеличится в 4 раза.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
9.1.24 T=0,2 с — период гармонического колебания с амплитудой 10 см. Найти смещение тела
9.1.26 Материальная точка совершает гармонические колебания. Если при неизменной амплитуде
9.2.1 Во сколько раз изменится частота колебаний математического маятника