Условие задачи:
Постоянная дифракционной решетки в 3,7 раза больше длины световой волны, нормально падающей на решетку. Определить число дифракционных максимумов, которые теоретически можно наблюдать в спектре такой решетки.
Задача №10.7.20 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(d=3,7\lambda\), \(n-?\)
Решение задачи:
Количество дифракционных максимумов можно определить по формуле:
\[n = 2{k_{\max }} + 1\;\;\;\;(1)\]
Формула очевидна, поскольку всегда имеется центральный максимум \(k=0\) и некоторое количество максимумов, симметричных относительно центрального.
Запишем формулу дифракционной решетки:
\[d\sin \varphi = k\lambda\;\;\;\;(2)\]
В этой формуле \(d\) — период решетки (также называют постоянной решетки), \(\varphi\) — угол дифракции, \(k\) — порядок максимума, \(\lambda\) — длина волны, падающей нормально на решетку.
Для нахождения максимального порядка дифракционного спектра необходимо воспользоваться следующими соображениями. Угол дифракции не может быть больше 90°, поэтому нужно определить порядок дифракционного максимума для \(\varphi=90^\circ\), то есть \(\sin \varphi = 1\). Для нахождения наибольшего порядка дифракционного спектра, нужно взять целую часть полученного числа. Ни в коем случае не округляйте в большую сторону! В таком случае при подстановке вашего наибольшего порядка в формулу дифракции Вы будете получать синус больше 1, чего быть не должно!
Итак, если \(\sin \varphi = 1\), то:
\[d = k\lambda \]
Откуда:
\[k = \frac{d}{\lambda }\]
Так как по условию задачи постоянная дифракционной решетки в 3,7 раза больше длины световой волны, то есть \(d=3,7\lambda\), то:
\[k = \frac{{3,7\lambda }}{\lambda } = 3,7\]
Взяв целую часть числа, получим \(k_{\max}=3\).
В итоге искомое число дифракционных максимумов \(n\) равно:
\[n = 2 \cdot 3 + 1 = 7\]
Ответ: 7.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
10.7.19 Сколько максимумов можно будет увидеть на экране, если на дифракционную решетку
10.7.21 Определить длину волны для линии в дифракционном спектре третьего порядка
10.7.22 Определить длину волны для линии в дифракционном спектре второго порядка