Условие задачи:

Бомбардировщик пикирует на цель под углом 60° к горизонту со скоростью 540 км/ч и сбрасывает бомбу на высоте 600 м. На каком расстоянии от цели по горизонтальному направлению надо освободить бомбу, чтобы она попала в цель?

Задача №1.6.13 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(\alpha=60^\circ\), \(v_0=540\) км/ч, \(h=600\) м, \(L-?\)

Решение задачи:

Схема к решению задачи Должно быть понятно, что бомба отличается от ракеты тем, что у нее нет двигателей, поэтому место попадания бомбы полностью определяется характеристиками движения бомбардировщика. В тот момент времени. когда бомбардировщик сбросит бомбу, она будет иметь тот же вектор скорости, что и самолет. Исходя из этого, приведем рисунок к этой задаче.

Запишем уравнения движения бомбы в проекциях на оси \(x\) и \(y\).

\[\left\{ \begin{gathered}
ox:x = {v_0}\cos \alpha \cdot t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \\
oy:y = {v_0}\sin \alpha \cdot t + \frac{{g{t^2}}}{2}\,\,\,(2) \hfill \\
\end{gathered} \right.\]

Обратите внимание во втором уравнении на знак «плюс», он имеет место, поскольку \(v_у\) и \(g\) сонаправлены.

Найдем сколько времени будет падать бомба, для этого воспользуемся уравнением (2) и решим квадратное уравнение:

\[h = {v_0}\sin \alpha  \cdot t + \frac{{g{t^2}}}{2}\]

\[g{t^2} + 2{v_0}\sin \alpha  \cdot t — 2h = 0\]

\[D = 4v_0^2{\sin ^2}\alpha  + 8gh\]

\[t = \frac{{ — 2{v_0}\sin \alpha  \pm \sqrt {4v_0^2{{\sin }^2}\alpha  + 8gh} }}{{2g}}\]

Заведомо видно, что один из корней получается отрицательным, остается следующий корень:

\[t = \frac{{ — 2{v_0}\sin \alpha  + \sqrt {4v_0^2{{\sin }^2}\alpha  + 8gh} }}{{2g}}\]

Подсчитаем время, поставив все известные величины в системе СИ. Покажем как перевести 540 км/ч в м/с.

\[540 \frac{км}{ч}  = 540\frac{{1000}}{{3600}}\frac{м}{с} = 150\frac{м}{с}\]

\[t = \frac{{ — 2 \cdot 150 \cdot \sin 60^\circ  + \sqrt {4 \cdot {{150}^2} \cdot {{\sin }^2}60^\circ  + 8 \cdot 10 \cdot 600} }}{{2 \cdot 10}} = 4,0\; с.\]

Подставим полученное время в уравнение (1) и найдем ответ:

\[L = {v_0}\cos \alpha  \cdot t\]

\[L = 150 \cdot \cos 60^\circ  \cdot 4 = 300\; м.\]

Ответ: 300 м.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Если Вам понравилась задача и ее решение, то Вы можете поделитесь ею с друзьями с помощью этих кнопок.

Смотрите также задачи:

1.6.12 Тело брошено с начальной скоростью 40 м/с под углом 30 градусов
1.6.14 Игрок посылает мяч с высоты 1,2 м над землей так, что угол
1.6.15 Камень, брошенный под углом к горизонту, упал на землю

Пожалуйста, поставьте оценку
( 7 оценок, среднее 5 из 5 )
Вы можете поделиться с помощью этих кнопок:
Комментарии: 11
  1. Александр

    Скажите, я направил ось y вверх, ось х как у вас, у меня получается : — V0sina t — gt^2/2 равное высоте, но выражая время оно получается отрицательно. Скажите почему так? Вроде правильно направил, проекция скорости по оси у направлена против самой оси как и ускорение свободного падения

    1. Игорь

      У меня аналогичный вопрос , помогите)

    2. Easyfizika (автор)

      Если начало координат Вы выбрали на уровне Земли, то уравнение движения в проекции на ось \(x\) должно выглядеть так:\[y = h — {\upsilon _0}\sin \alpha t — \frac{{g{t^2}}}{2}\]В момент попадания в цель \(y=0\), поэтому:\[0 = h — {\upsilon _0}\sin \alpha t — \frac{{g{t^2}}}{2}\]\[h = {\upsilon _0}\sin \alpha t + \frac{{g{t^2}}}{2}\]Получили точно такое же уравнение, как и в решении выше :smile:

      1. Александр

        Скажите а почему мы добавляем в выражение высоту? , мы же её ищем уравнением движения . Спасибо вам что помогаете , мне вас посоветовал преподаватель , теперь не могу оторваться от сайта , решаю постоянно.

        1. Easyfizika (автор)

          Высота же дана в условии.

          В уравнениях движения Вы обязательно должны учесть начальное положение тела относительно выбранной системы координат.

          Для разных систем координат оно будет разным.

          В решении задачи, представленной на этой странице, начальные координаты тела относительно выбранной системы координат равны \(x=0\) и \(y=0\), то есть (0;0). И если я подставлю время \(t=0\) в оба уравнения движения, то я получу \(x=0\) и \(y=0\). Значит уравнения движения (хотя бы в части начальных координат точек) записаны верно.

          Если же ввести систему координат так, как сделали это Вы (ось \(x\) направлена как у меня, начало координат находится под точкой сброса бомбы на уровне Земли, и ось \(y\) направлена наверх), то начальные координаты тела относительно выбранной системы координат равны \(x=0\) и \(y=h\), то есть (0;h). Если я подставлю время \(t=0\) в уравнение движения (которое я привел в ответе на Ваш вопрос), то я получу \(y=h\) (уравнение движения по оси \(x\) у нас аналогичное).

      2. Александр

        И ещё почему в момент попадания y=0?

        1. Easyfizika (автор)

          На своем рисунке из точки попадания в цель опустите перпендикуляр на ось \(y\) — он попадет в точку \(y=0\).

  2. Аноним

    Если не ошибаюсь, но ведь Vy сонаправлен с g, а не Vx.

    1. Easyfizika (автор)

      Точно, исправил опечатку, спасибо! :smile:

  3. Alyona

    А разве бомба после отпускания не будет иметь ещё горизонтальной скорости?

    1. Easyfizika (автор)

      Конечно. В момент отпускания бомба имеет такую же скорость, что и бомбардировщик. Учитывая, что бомбардировщик пикирует под углом \(\alpha\) к горизонту, то бомба в момент отпускания будет иметь скорость, равную по модулю \(\upsilon_0\). В проекции на ось \(x\) скорость бомбы равна \({\upsilon _0}\cos \alpha \), В проекции на ось \(y\) — \({\upsilon _0}\sin \alpha \), Вы это могли видеть по уравнениям движения бомбы в проекциях на оси координат.

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: