Условие задачи:
При замыкании на сопротивление 5 Ом батарея элементов дает ток 1 А. Ток короткого замыкания батареи равен 6 А. Какую наибольшую полезную мощность может дать батарея?
Задача №7.4.49 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(R=5\) Ом, \(I=1\) А, \(I_{кз}=6\) А, \(P_{max}-?\)
Решение задачи:
Будем решать задачу с конца, поэтому определим, при каких условиях полезная мощность будет максимальной. Мощность во внешней цепи \(P\) можно найти по формуле:
\[P = UI\;\;\;\;(1)\]
Здесь \(U\) — напряжение на внешней цепи, которое можно найти согласно закону Ома по формуле:
\[U = {\rm E} — Ir\;\;\;\;(2)\]
Подставим выражение (2) в формулу (1):
\[P = \left( {{\rm E} — Ir} \right)I\]
Рассмотрим функцию \(P\left( I \right)\), то есть зависимость мощности от силы тока:
\[P\left( I \right) = \left( {{\rm E} — Ir} \right)I\]
Раскроем скобки, тогда:
\[P\left( I \right) = {\rm E}I — {I^2}r\;\;\;\;(3)\]
Понятно, что графиком этой функции является парабола, обращенная ветвями вниз, при этом функция достигает максимума при силе тока \(I_{max}\), равной:
\[{I_{max }} = \frac{{\rm E}}{{2r}}\;\;\;\;(4)\]
Если подставить \(I_{max}\) в (3), то получим искомое значение максимальной мощности во внешней цепи \(P_{max}\):
\[{P_{max}} = {\text{E}}{I_{max}} — I_{max}^2r\]
Учитывая (4), имеем:
\[{P_{max}} = \frac{{{{\text{E}}^2}}}{{2r}} — \frac{{{{\text{E}}^2}}}{{4r}}\]
\[{P_{max}} = \frac{{{{\text{E}}^2}}}{{4r}}\]
Домножим и числитель, и знаменатель этой формулы на \(r\), далее Вы поймете, для чего мы это делаем:
\[{P_{max}} = \frac{{{{\text{E}}^2}r}}{{4{r^2}}}\;\;\;\;(5)\]
Ток короткого замыкания \(I_{кз}\) легко определить по формуле:
\[{I_{кз}} = \frac{{\rm E}}{r}\;\;\;\;(6)\]
Откуда:
\[{\rm E} = {I_{кз}}r\;\;\;\;(7)\]
Учитывая (6), формулу (5) можно записать в таком виде:
\[{P_{max}} = \frac{{I_{кз}^2r}}{4}\;\;\;\;(8)\]
Также запишем закон Ома для полной цепи (когда внешнее сопротивление равно \(R\), а ток в цепи равен \(I\)):
\[I = \frac{{\rm E}}{{R + r}}\]
Подставим в эту формулу выражение (7):
\[I = \frac{{{I_{кз}}r}}{{R + r}}\]
Решим это уравнение:
\[IR + Ir = {I_{кз}}r\]
\[r\left( {{I_{кз}} — I} \right) = IR\]
\[r = \frac{{IR}}{{{I_{кз}} — I}}\]
Остается полученное выражение подставить в формулу (8):
\[{P_{max}} = \frac{{I_{кз}^2IR}}{{4\left( {{I_{кз}} — I} \right)}}\]
Задача решена в общем виде, подставим численные данные задачи в формулу и посчитаем ответ:
\[{P_{max}} = \frac{{{6^2} \cdot 1 \cdot 5}}{{4 \cdot \left( {6 — 1} \right)}} = 9\;Вт\]
Ответ: 9 Вт.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
7.4.48 Источник тока с ЭДС 5 В замыкается один раз на сопротивление 4 Ом, а другой раз — на 9 Ом
7.4.50 Определите КПД электропаяльника сопротивлением 25 Ом, если медная часть его массой
7.4.51 Найти ток короткого замыкания в цепи генератора с ЭДС 70 В, если при увеличении