Тепловая машина с максимально возможным КПД имеет в качестве нагревателя

Условие задачи:

Тепловая машина с максимально возможным КПД имеет в качестве нагревателя резервуар с кипящей водой при температуре 100 °C, а в качестве холодильника – сосуд со льдом при 0 °C. Какая масса льда растает при совершении машиной работы 10 МДж?

Задача №5.5.44 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(t_н=100^\circ\) C, \(t_х=0^\circ\) C, \(A=10\) МДж, \(m-?\)

Решение задачи:

Так как в тепловой машине холодильником является сосуд со льдом, то при передаче холодильнику количества теплоты \(Q_х\) будет плавиться лёд некоторой массы \(m\). При этом справедлива формула:

\[{Q_х} = \lambda m\]

\[m = \frac{{{Q_х}}}{\lambda }\;\;\;\;(1)\]

Здесь \(\lambda\) – удельная теплота плавления льда, равна 330 кДж/кг.

Коэффициент полезного действия любой тепловой машины \(\eta\) можно определить по формуле:

\[\eta = \frac{A}{{{Q_н}}}\;\;\;\;(2)\]

Работа машины \(A\), количество теплоты \(Q_н\), переданное нагревателем, и количество теплоты \(Q_х\), отданное холодильнику, связаны формулой:

\[{Q_н} = {Q_х} + A\;\;\;\;(3)\]

Подставим выражение (3) в формулу (2):

\[\eta = \frac{A}{{{Q_х} + A}}\]

Перемножим это равенство “крест-накрест”:

\[A = \eta {Q_х} + \eta A\]

В левую сторону перенесём все члены с множителем \(A\), вынесем его за скобки, остальные оставим в правой и выразим количество теплоты \(Q_х\):

\[A\left( {1 – \eta } \right) = \eta {Q_х}\]

\[{Q_х} = \frac{{A\left( {1 – \eta } \right)}}{\eta } = A\left( {\frac{1}{\eta } – 1} \right)\;\;\;\;(4)\]

Поскольку рассматриваемая тепловая машина является идеальной, то её КПД \(\eta\) также можно находить по формуле:

\[\eta = \frac{{{T_н} – {T_х}}}{{{T_н}}}\]

Поставим полученное выражение в формулу (4):

\[{Q_х} = A\left( {\frac{{{T_н}}}{{{T_н} – {T_х}}} – 1} \right)\]

\[{Q_х} = A\frac{{{T_н} – {T_н} + {T_х}}}{{{T_н} – {T_х}}}\]

\[{Q_х} = \frac{{A{T_х}}}{{{T_н} – {T_х}}}\]

И наконец, подставим это выражение в формулу (1):

\[m = \frac{{A{T_х}}}{{\lambda \left( {{T_н} – {T_х}} \right)}}\]

Перед расчётом численного ответа, переведём температуры из градусов Цельсия в Кельвины:

\[0^\circ\;C = 273\;К\]

\[100^\circ\;C = 373\;К\]

Численно масса растаявшего льда \(m\) равна:

\[m = \frac{{10 \cdot {{10}^6} \cdot 273}}{{330 \cdot {{10}^3} \cdot \left( {373 – 273} \right)}} = 82,73\;кг\]

Ответ: 82,73 кг.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

5.5.43 Коэффициент полезного действия тепловой машины равен 25%. В результате её
5.5.45 Один моль одноатомного газа совершает цикл, состоящий из двух изохор и двух изобар
5.5.46 Над одним молем идеального газа совершают цикл, показанный на рисунке

Пожалуйста, поставьте оценку
( 11 оценок, среднее 5 из 5 )
Вы можете поделиться с помощью этих кнопок:
Комментарии: 8
  1. Дарья

    Здравствуйте. Откуда взялась 10 в числителе? Ответ 8.27

  2. Аноним

    Благодарю :idea:

  3. Рафаэль

    Ес 82,72*330 000= 27 300 900Дж а всего имеется 10 000 000 которые потом расходуются на работу, ответ не верен. у нас кпд 27 проц , Q1=2,7 МДж, Q2= 2. Q2- это энергия отдаваемая холодильнику она будет топить лед ответ 6 кг

    1. Рафаэль

      извинясь Q1 27 МДж как раз, но мое решение легче

  4. Аноним

    А в градусах можно посчитать?

    1. Easyfizika (автор)

      Нельзя, иначе получите неверный ответ. Я вам предлагаю сначала посчитать в градусах Цельсия, а потом в Кельвинах, чтобы самому в этом убедиться.

      1. Аноним

        Хорошо и еще вопрос:в жидкостях по идее при любой температуре происходит процесс испарения.Так вот решая задачи на эту тему мы получается пренебрегаем эттим испарением?

        1. Easyfizika (автор)

          Разумеется пренебрегаем

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: