Условие задачи:

Медный шарик, удаленный от других тел, облучается монохроматическим излучением, длина волны которого 0,2 мкм. До какого максимального потенциала зарядится шарик, если работа выхода электрона с поверхности меди 4,5 эВ?

Задача №11.2.27 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(\lambda = 0,2\) мкм, \(A_{вых} = 4,5\) эВ, \(\varphi — ?\)

Решение задачи:

Согласно уравнению Эйнштейна для фотоэффекта энергия поглощенного кванта \(h\nu\) идет на совершение работы выхода \(A_{вых}\) и на сообщение кинетической энергии вылетевшему электрону \(\frac{{{m_e}{\upsilon ^2}}}{2}\). Поэтому:

\[h\nu = {A_{вых}} + \frac{{{m_e}{\upsilon ^2}}}{2}\;\;\;\;(1)\]

В этой формуле \(h\) — это постоянная Планка, равная 6,62·10-34 Дж·с.

Частоту колебаний \(\nu\) можно выразить через скорость света \(c\), которая равна 3·108 м/с, и длину волны \(\lambda\) по следующей формуле:

\[\nu = \frac{c}{\lambda}\;\;\;\;(2)\]

Подставим выражение (2) в формулу (1), тогда:

\[\frac{{hc}}{\lambda } = {A_{вых}} + \frac{{{m_e}{\upsilon ^2}}}{2}\;\;\;\;(3)\]

Зададимся вопросом, почему заряд (а следовательно и потенциал медного шарика) не может возрастать бесконечно. Когда фотон ультрафиолетового света вырвет первый электрон, то заряд шарика станет положительным и равным \(e\) (это модуль заряда электрона, равный 1,6·10-19 Кл), а электрон удалится от шарика на бесконечное расстояние. При дальнейшем облучении шарика его заряд будет возрастать и настанет момент, когда вырванные электроны будут обратно притягиваться к шарику. При этом граничное условие для электрона, который ещё сможет вырваться навсегда из шарика и не вернется обратно к нему, по закону сохранения энергии можно записать:

\[ — \varphi e + \frac{{{m_e}{\upsilon ^2}}}{2} = 0\]

То есть изначально у электрона (в момент выхода из атома меди) есть потенциальная энергия взаимодействия с заряженным шариком и кинетическая энергия, а на бесконечности энергии нет.

Здесь \(\varphi\) — искомый потенциал шарика, а знак «-» показывает знак заряда электрона. Имеем:

\[\frac{{{m_e}{\upsilon ^2}}}{2} = \varphi e\;\;\;\;(4)\]

Подставим выражение из (4) в уравнение (3), тогда:

\[\frac{{hc}}{\lambda } = {A_{вых}} + \varphi e\]

\[\varphi e = \frac{{hc}}{\lambda } — {A_{вых}}\]

Приведем справа под общий знаменатель:

\[\varphi e = \frac{{hc — {A_{вых}}\lambda }}{\lambda }\]

\[\varphi = \frac{{hc — {A_{вых}}\lambda }}{{e\lambda }}\]

Задача решена в общем виде, посчитаем теперь численный ответ задачи (1 эВ = 1,6·10-19 Дж):

\[\varphi = \frac{{6,62 \cdot {{10}^{ — 34}} \cdot 3 \cdot {{10}^8} — 4,5 \cdot 1,6 \cdot {{10}^{ — 19}} \cdot 0,2 \cdot {{10}^{ — 6}}}}{{1,6 \cdot {{10}^{ — 19}} \cdot 0,2 \cdot {{10}^{ — 6}}}} = 1,71\;В\]

Ответ: 1,71 В.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

11.2.26 Одна из пластин плоского незаряженного конденсатора с расстоянием между ними 10 мм
11.2.28 Источник монохроматического света мощностью 64 Вт излучает ежесекундно 10^20 фотонов
11.2.29 Заряд металлического шара емкостью 2,1 мкФ равен 6,3 мкКл. На сколько увеличится заряд

Пожалуйста, поставьте оценку
( 16 оценок, среднее 5 из 5 )
Вы можете поделиться с помощью этих кнопок:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: