Условие задачи:
При удвоении частоты падающего на металл света задерживающее напряжение для фотоэлектронов увеличивается в 5 раз. Частота первоначально падающего света 5·1014 Гц. Определите длину волны света, соответствующую красной границе для этого металла.
Задача №11.2.24 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
\(\nu_2=2\nu_1\), \(U_{з2}=5U_{з1}\), \(\nu_1=5 \cdot 10^{14}\) Гц, \(\lambda_{\max}-?\)
Решение задачи:
Согласно уравнению Эйнштейна для фотоэффекта энергия поглощенного кванта \(h\nu\) идет на совершение работы выхода \(A_{вых}\) и на сообщение кинетической энергии вылетевшему электрону \(\frac{{{m_e}{\upsilon ^2}}}{2}\). Поэтому:
\[h\nu = {A_{вых}} + \frac{{{m_e}{\upsilon ^2}}}{2}\;\;\;\;(1)\]
В этой формуле \(h\) — это постоянная Планка, равная 6,62·10-34 Дж·с.
Если изменить полярность источника напряжения в установке для исследования фотоэффекта, то электрическое поле между катодом и анодом будет тормозить фотоэлектроны. При задерживающем напряжении \(U_з\) фототок становится равным нулю. При этом по закону сохранения энергии справедливо равенство:
\[\frac{{{m_e}{\upsilon ^2}}}{2} = e{U_з}\;\;\;\;(2)\]
Здесь \(m_e\) — масса электрона, равная 9,1·10-31 кг, \(e\) — модуль заряда электрона, равный 1,6·10-19 Кл.
Принимая во внимание равенство (2), уравнение (1) примет вид:
\[h\nu = {A_{вых}} + e{U_з}\]
Запишем это уравнение для двух случаев, описанных в условии задачи:
\[\left\{ \begin{gathered}
h{\nu _1} = {A_{вых}} + e{U_{з1}} \hfill \\
h{\nu _2} = {A_{вых}} + e{U_{з2}} \hfill \\
\end{gathered} \right.\]
Так как по условию задачи \(\nu_2=2\nu_1\) и \(U_{з2}=5U_{з1}\), имеем:
\[\left\{ \begin{gathered}
h{\nu _1} = {A_{11}} + e{U_{з1}} \;\;\;\;(3)\hfill \\
2h{\nu _1} = {A_{11}} + 5e{U_{з1}} \hfill \\
\end{gathered} \right.\]
Вычтем из нижнего уравнения верхнее, тогда:
\[h{\nu _1} = 4e{U_{з1}}\]
\[e{U_{з1}} = \frac{1}{4}h{\nu _1}\]
Полученное равенство подставим в уравнение (3), тогда:
\[h{\nu _1} = {A_{вых}} + \frac{1}{4}h{\nu _1}\]
\[{A_{вых}} = \frac{3}{4}h{\nu _1}\;\;\;\;(4)\]
Работа выхода \(A_{вых}\) — это минимальная работа, которую надо совершить, чтобы удалить электрон из металла.
Минимальная частота света \({\nu _{\min }}\), при которой ещё возможен фотоэффект, соответствует максимальной длине волны \(\lambda_{\max}\). Эту длину волны \(\lambda_{\max}\) называют красной границей фотоэффекта. При этом верно записать:
\[h{\nu _{\min }} = {A_{вых}}\;\;\;\;(5)\]
В этой формуле \(h\) — это постоянная Планка, равная 6,62·10-34 Дж·с.
Частоту колебаний можно выразить через скорость света \(c\), которая равна 3·108 м/с, и длину волны по следующей формуле:
\[\nu_{\min} = \frac{c}{\lambda_{\max}}\;\;\;\;(6)\]
Подставим выражение (6) в формулу (5), тогда:
\[\frac{{hc}}{{{\lambda _{\max }}}} = {A_{вых}}\;\;\;\;(7)\]
Учитывая (4) и (7), имеем:
\[\frac{3}{4}h{\nu _1} = \frac{{hc}}{{{\lambda _{\max }}}}\]
\[\frac{3}{4}{\nu _1} = \frac{c}{{{\lambda _{\max }}}}\]
Окончательно получим:
\[{\lambda _{\max }} = \frac{{4c}}{{3{\nu _1}}}\]
Посчитаем численный ответ:
\[{\lambda _{\max }} = \frac{{4 \cdot 3 \cdot {{10}^8}}}{{3 \cdot 5 \cdot {{10}^{14}}}} = 0,8 \cdot {10^{ — 6}}\;м = 0,8\;мкм\]
Ответ: 0,8 мкм.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Смотрите также задачи:
11.2.23 Найти задерживающий потенциал для фотоэлектронов при действии на калий излучения
11.2.25 До какого максимального потенциала зарядится уединенный медный шарик, если его облучать
11.2.26 Одна из пластин плоского незаряженного конденсатора с расстоянием между ними 10 мм
в решений степень частоты перепутали кажется ,там 14 написано а должно быть 15 степень
оказывается ошибка там где дано там 14 вместо 15